SHORT COMMUNICATIONS

The density curve of F distribution

LIU Xiaopeng and LIU Kunhui**

(College of Sciences, Beijing Jiaotong University, Beijing 100044, China)

Received June 25, 2003; revised August 29, 2003

Abstract Employing the properties of special function, we discuss the positional relation between two density curves with different parameters for F distribution in this paper. Some varying regularities about the position of density curve of F distribution have been obtained.

Keywords: F distribution, density curve, parameter, Γ-function.

Denote by F(m,n) the F distribution with parameters m and n, also by $f_{m,n}(x)$ the probability density function of F(m,n). $y = f_{m,n}(x)$ is called the density curve of F(m,n).

It can be proved that

Theorem 1. Suppose that m, n_1 and n_2 are all positive constants and $n_1 < n_2 < \infty$. If $0 < m \le 2$, the equation $f_{m,n_1}(x) = f_{m,n_2}(x)$, $0 < x < \infty$ has only one root $\tilde{x} \in (1,\infty)$, and $f_{m,n_1}(x) < f_{m,n_2}(x)$ when $x \in (0,\tilde{x})$, $f_{m,n_1}(x) > f_{m,n_2}(x)$ when $x \in (\tilde{x},\infty)$. If m > 2, the equation $f_{m,n_1}(x) = f_{m,n_2}(x)$, $0 < x < \infty$ has two roots $\underline{x} \in (0,1)$ and $\bar{x} \in (1,\infty)$, $f_{m,n_1}(x) < f_{m,n_2}(x)$ when $x \in (\underline{x},\bar{x})$ and $f_{m,n_1}(x) > f_{m,n_2}(x)$ when $x \in (0,\underline{x}) \cup (\bar{x},\infty)$.

Theorem 2. Suppose that m and n_0 are all positive constants, n is a positive variable parameter. When $0 < m \le 2$ and $n \ne n_0$, denote by $\bar{x}(n) \in (1,\infty)$ the only root of equation $f_{m,n}(x) = f_{m,n_0}(x)$, $0 < x < \infty$. When m > 2 and $n \ne n_0$, denote by $\underline{x}(n) \in (0,1)$ and $\bar{x}(n) \in (1,\infty)$ the two roots of equation $f_{m,n}(x) = f_{m,n_0}(x)$, $0 < x < \infty$. Then $x = \bar{x}(n)$, $x = \underline{x}(n)$ and $x = \bar{x}(n)$ are all continuously derivable on $(0, n_0)$ and (n_0, ∞) , and satisfy the equation

$$\left[q(m,n) - \frac{1}{2}\ln\left(1 + \frac{m}{n}x\right) + \frac{1}{2}\frac{\frac{m}{n}\left(1 + \frac{m}{n}\right)x}{1 + \frac{m}{n}x}\right]dn$$

$$= \frac{m^2(n - n_0)(x - 1)}{2(n + mx)(n_0 + mx)}dx,$$

where

$$q(m,n) \\ \triangleq \lim_{k \to \infty} \left\{ \left(\frac{1}{n} + \frac{1}{n+2} + \dots + \frac{1}{n+2k} \right) \\ - \left(\frac{1}{m+n} + \frac{1}{m+n+2} + \dots + \frac{1}{m+n+2k} \right) \right\} \\ - \frac{m}{2} \frac{1}{n}.$$

Besides, $\lim_{n \to n_0} \underline{x}(n)$, $\lim_{n \to n_0} \overline{x}(n)$ and $\lim_{n \to n_0} \tilde{x}(n)$ exist and are all roots of the equation

$$q(m, n_0) + \int_0^x \frac{m^2(1-t)}{2(n_0+mt)^2} dt = 0, \quad 0 < x < \infty.$$

Theorem 3. Suppose that m_1, m_2 and n are all positive constants and $m_1 < m_2 < \infty$. If $0 < n \le 2$, the equation $f_{m_1,n}(x) = f_{m_2,n}(x)$, $0 < x < \infty$ has only one root $\tilde{x} \in (0,1)$, $f_{m_1,n}(x) < f_{m_2,n}(x)$ when $x \in (\tilde{x},\infty)$ and $f_{m_1,n}(x) > f_{m_2,n}(x)$ when $x \in (0,\tilde{x})$. If n > 2, the equation $f_{m_1,n}(x) = f_{m_2,n}(x)$, $0 < x < \infty$ has two roots $\underline{x} \in (0,1)$ and $\overline{x} \in (1,\infty)$, $f_{m_1,n}(x) < f_{m_2,n}(x)$ when $x \in (\underline{x},\overline{x})$ and $f_{m_1,n}(x) > f_{m_2,n}(x)$ when $x \in (\underline{x},\overline{x})$ and $f_{m_1,n}(x) > f_{m_2,n}(x)$ when $x \in (0,\underline{x}) \cup (\bar{x},\infty)$.

^{*} Supported by the National Natural Science Foundation of China (Grant No. 19671004)

^{**} To whom correspondence should be addressed. E-mail: lkhww@263.net

Theorem 4. Suppose m_0 and n are all positive constants, m is a positive variable parameter. When $0 < n \le 2$ and $m \ne m_0$, denote by $\tilde{x}(m) \in (0,1)$ the only root of equation $f_{m,n}(x) = f_{m_0,n}(x)$, $0 < x < \infty$. When n > 2 and $m \ne m_0$, denote by $\underline{x}(m) \in (0,1)$ and $\overline{x}(m) \in (1,\infty)$ the two roots of equation $f_{m,n}(x) = f_{m_0,n}(x)$, $0 < x < \infty$. Then $x = \tilde{x}(m)$, $x = \underline{x}(m)$ and $x = \overline{x}(m)$ are all continuously derivable on $(0,m_0)$ and (m_0,∞) , and satisfy the equation

$$\left\{ \lim_{k \to \infty} \left[\left(\frac{1}{m} + \frac{1}{m+2} + \dots + \frac{1}{m+2k} \right) - \left(\frac{1}{m+n} + \frac{1}{m+n+2} + \dots + \frac{1}{m+n+2k} \right) \right] + \frac{1}{2} + \frac{1}{2} \ln m + \frac{1}{2} \ln x - \frac{(n+m)x}{2(n+mx)} - \frac{1}{2} \ln (n+mx) \right\} dm + \left[\frac{n^2(m-m_0)(1-x)}{2(n+m_0x)(n+mx)x} \right] dx = 0.$$

Besides, $\lim_{m \to m_0} \tilde{x}$ (m), $\lim_{m \to m_0} \underline{x}$ (m) and $\lim_{m \to m_0} \bar{x}$ (m) exist and are all roots of the equation

$$\begin{split} &\lim_{k\to\infty} \left[\left(\frac{1}{m_0} + \frac{1}{m_0 + 2} + \dots + \frac{1}{m_0 + 2k} \right) \right. \\ &- \left(\frac{1}{m_0 + n} + \frac{1}{m_0 + n + 2} + \dots + \frac{1}{m_0 + n + 2k} \right) \left. \right] \\ &+ \frac{1}{2} \ln m_0 - \frac{1}{2} \ln (m_0 + n) \\ &- \int_x^1 \frac{n^2 (1 - t)}{2(n + m_0 t)^2 t} \mathrm{d}t = 0, \quad x \in (0, \infty) \,. \end{split}$$

Theorem 5. Suppose m_0 and n are all positive constants, m is a positive variable parameter. Then $\forall n > 0$ and $\forall x > 0$, $\lim_{n \to \infty} f_{m,n}(x)$ exists and

$$f_{\infty,n}(x) \triangleq \lim_{m \to \infty} f_{m,n}(x) = \frac{\left(\frac{n}{2}\right)^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)} x^{-\frac{n+2}{2}} e^{-\frac{n}{2x}},$$

$$\forall n > 0, \ \forall x > 0;$$

$$\sup_{x>0} f_{\infty,n}(x) = f_{\infty,n}(x) \mid_{x=\frac{n}{n+2}}$$

$$= \frac{(n+2)^{\frac{n+2}{2}}}{2^{\frac{n}{2}} n \Gamma\left(\frac{n}{2}\right)} e^{-\frac{n+2}{2}}, \quad \forall n > 0.$$

If n > 2, $\forall m_0 > 0$, the equation $f_{\infty,n}(x) = f_{m_0,n}(x)$, $0 < x < \infty$ has two roots $\underline{x}(\infty) \in (0,1)$ and $\overline{x}(\infty) \in (1,\infty)$, $f_{\infty,n}(x) > f_{m_0,n}(x)$ when

 $x \in (\underline{x}(\infty), \overline{x}(\infty))$ and $f_{\infty,n}(x) < f_{m_0,n}(x)$ when $x \in (0,\underline{x}(\infty)) \cup (\overline{x}(\infty),\infty)$. If $0 < n \le 2$, $\forall m_0 > 0$, the equation $f_{\infty,n}(x) = f_{m_0,n}(x)$, $0 < x < \infty$ has only one root $\widetilde{x}(\infty) \in (0,1)$, $f_{\infty,n}(x) < f_{m_0,n}(x)$ when $x \in (0,\widetilde{x}(\infty))$ and $f_{\infty,n}(x) > f_{m_0,n}(x)$ when $x \in (\widetilde{x}(\infty),\infty)$.

Besides, $\forall n > 0$, the density curve $y = f_{m,n}(x)$ has some stability when $m \to \infty$.

Theorem 6. Suppose m_1 , m_2 , n_1 , n_2 are all positive constants and $m_1 \le m_2$. Let

$$\rho = \frac{\left(\frac{1}{m_1} - \frac{1}{m_2}\right)}{\left(\frac{1}{n_2} - \frac{1}{n_1}\right)}; \quad g(x) = \ln \frac{f_{m_2, n_2}(x)}{f_{m_1, n_1}(x)},$$

$$x \in (0, \infty).$$

Then

If $n_2 > n_1$, the equation $f_{m_1, n_1}(x) = f_{m_2, n_2}(x)$, $x \in (0, \infty)$ has two roots $x_1 \in (0, 1)$ and $x_2 \in (1, \infty)$. $f_{m_2, n_2}(x) > f_{m_1, n_1}(x)$ when $x \in (x_1, x_2)$ and $f_{m_2, n_2}(x) < f_{m_1, n_1}(x)$ when $x \in (0, x_1) \cup (x_2, \infty)$.

If $n_2 < n_1$, then $\rho \in (0, \infty)$ and

(1) $\rho = 1$. The equation $f_{m_1, n_1}(x) = f_{m_2, n_2}(x)$, $x \in (0, \infty)$ has only one root x_1 , $f_{m_2, n_2}(x) < f_{m_1, n_1}(x)$ when $x \in (0, x_1)$ and $f_{m_1, n_2}(x) > f_{m_1, n_1}(x)$ when $x \in (x_1, \infty)$.

- (2) $0 < \rho < 1$, then $g(1) < g(\rho)$ and
- (i) g(1) > 0, the conclusion is the same as (1).
- (ii) g(1) = 0, the equation $f_{m_1, n_1}(x) = f_{m_2, n_2}(x)$, $x \in (0, \infty)$ has two roots $x_1 \in (0, \rho)$ and $x_2 = 1$. When $x_1 < x \ne 1$, there is $f_{m_2, n_2}(x) > f_{m_1, n_1}(x)$, and when $x < x_1$, there is $f_{m_2, n_2}(x) < f_{m_1, n_1}(x)$.
- (iii) $g(1) < 0 < g(\rho)$, the above equation has three roots $x_1 \in (0, \rho)$, $x_2 \in (\rho, 1)$ and $x_3 \in (1, \infty)$. When $x \in (0, x_1) \cup (x_2, x_3)$ there is $f_{m_2, n_2}(x) < f_{m_1, n_1}(x)$ and when $x \in (x_1, x_2) \cup (x_3, \infty)$ there is $f_{m_2, n_2}(x) > f_{m_1, n_1}(x)$.

(iv) $g(\rho) = 0$, the above equation has two roots $x_1 = \rho$ and $x_2 \in (1, \infty)$. When $x_2 > x \neq \rho$ there is $f_{m_2, n_2}(x) < f_{m_1, n_1}(x)$ and when $x > x_2$ there is $f_{m_3, n_2}(x) > f_{m_1, n_1}(x)$.

(v) $g(\rho) < 0$, the above equation has only one root $x_1 \in (1, \infty)$, $f_{m_2, n_2}(x) < f_{m_1, n_1}(x)$ when $x < x_1$ and $f_{m_2, n_2}(x) > f_{m_1, n_1}(x)$ when $x > x_1$.

(3) $\rho > 1$, then $g(1) > g(\rho)$ and the problem can be discussed by analysing the following cases: i) $g(\rho) > 0$. ii) $g(\rho) = 0$. iii) $g(\rho) < 0 < g(1)$. iv) g(1) = 0. v) g(1) < 0. The corresponding conclusions are also similar to (2).

Theorem 7. Suppose m_0 , n_0 , m_1 , n_1 and x_1 are all positive constants, $(m_1, n_1) \neq (m_0, n_0)$ and $f_{m_1, n_1}(x_1) = f_{m_0, n_0}(x_1)$. If $U(m_1, n_1, x_1) \neq 0$, then there exists an only continuously derivable function x = x(m, n) on some neighborhood of (m_1, n_1) , which satisfies $x(m_1, n_1) = x_1$ and

$$f_{m,n}(x) = f_{m_0,n_0}(x),$$

$$V(m,n,x) + U(m,n,x) \frac{\partial x}{\partial m} = 0,$$

$$T(m,n,x) + U(m,n,x) \frac{\partial x}{\partial n} = 0,$$

where

$$= \frac{(1-x)[nn_0(m-m_0)+mm_0x(n-n_0)]}{2x(n_0+m_0x)(n+mx)},$$

$$V(m,n,x)$$

$$= \lim_{k\to\infty} \left[\left(\frac{1}{m} + \frac{1}{m+2} + \dots + \frac{1}{m+2k} \right) - \left(\frac{1}{m+n} + \frac{1}{m+n+2} + \dots + \frac{1}{m+n+2k} \right) \right]$$

$$+ \frac{1}{2} + \frac{1}{2} \ln m + \frac{1}{2} \ln x$$

$$- \frac{1}{2} \ln(n + mx) - \frac{(m+n)x}{2(n+mx)},$$

$$T(m, n, x)$$

$$= \lim_{k \to \infty} \left[\left(\frac{1}{n} + \frac{1}{n+2} + \dots + \frac{1}{n+2k} \right) - \left(\frac{1}{n+m} + \frac{1}{n+m+2} + \dots + \frac{1}{n+m+2k} \right) \right]$$

$$- \frac{m}{2} \cdot \frac{1}{n} - \frac{1}{2} \ln(n+mx) + \frac{1}{2} \ln n$$

$$+ \frac{m+n}{2n} \cdot \frac{mx}{n+mx};$$

$$m > 0, \quad n > 0, \quad x > 0.$$

Specially, there are two continuously derivable functions $x = x_1(m, n)$ and $x = x_2(m, n)$ on region $|(m, n): m > m_0, n > n_0|$, which satisfy the above three equations and $0 < x_1(m, n) < 1 < x_2(m, n)$.

Note. All the cases of Theorem 6 are indeed existent but the limit of x(m,n) is not certainly existent when $m \rightarrow m_0$ and $n \rightarrow n_0$, where x(m,n) is some solution function of equation $f_{m,n}(x) = f_{m_0,n_0}(x)$ in Theorem 7. Several examples can be given to explain the above facts.

The basic introduction to F distribution is given in [1-2].

References

- 1 DeGroot, M. H. Probability and Statistics, 2nd ed., California: Addison-Wesley Publishing Company, 1984, 499~506.
- 2 Hogg, R.V. et al. Probability and Statistical Inference, 3rd ed., New York: Macmillan Publishing Company, 1988, 266~276.